Students should be able to select and apply the following equations from the *Physics equation sheet*. Equations required for Higher Tier papers only are indicated by HT in the left hand column.

Equation number	Word equation	Symbol equation
1 HT	pressure due to a column of liquid = height of column × density of liquid × gravitational field strength (g)	$p = h \rho g$
2	$(final\ velocity)^2 - (initial\ velocity)^2 = 2 \times acceleration \times distance$	$v^2 - u^2 = 2 a s$
3 HT	force = change in momentum time taken	$F = \frac{m \ \Delta v}{\Delta t}$
4	elastic potential energy = $0.5 \times \text{spring constant} \times (\text{extension})^2$	$E_e = \frac{1}{2} k e^2$
5	change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = m c \Delta \theta$
6	$period = \frac{1}{frequency}$	
7	magnification = $\frac{\text{image height}}{\text{object height}}$	
8 HT	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	F = B I l
9	thermal energy for a change of state = mass × specific latent heat	E = m L
10 HT	potential difference across primary coil potential difference across secondary coil = number of turns in primary coil number of turns in secondary coil	$\frac{V_p}{V_s} = \frac{n_p}{n_s}$
11 HT	potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_s I_s = V_p I_p$
12	For gases: pressure × volume = constant	p V = constant